Cool Jobs: Unearthing the secrets of soil | Science News for Students

Cool Jobs: Unearthing the secrets of soil

These scientists get dirty to investigate unsolved mysteries
Nov 16, 2017 — 6:45 am EST
shoveling dirt

People often look at soils as just compacted dirt. In fact, soils are alive with microbes, worms and more. And their ingredients, which vary widely, can help everyone from crime fighters to anthropologists and climate scientists.


The dirt under your feet is easy to overlook. But just because it’s common doesn’t mean it’s boring. Some researchers call soil the skin of the Earth.

“It’s the most important part of the planet, because it covers everything,” says Lorna Dawson. She’s a soil scientist at the James Hutton Institute in Aberdeen, Scotland.

Soil is the complex mix of minerals, carbon-rich matter, water and air that forms Earth’s surface layer. It does crucial jobs such as growing our food, cleaning the air and storing water. Soil contains the decomposing remains of plants and animals. And it’s alive with countless microbes, such as bacteria and fungi.

Soil also holds clues to major unsolved mysteries. Deep layers in bogs contain evidence of the activities of ancient peoples. Dirt under a shoe or on someone’s clothing can help scientists like Dawson catch criminals. And high in the Arctic, frozen soil holds bacteria that might one day help protect the planet.

Digging in frozen soil

Janet Jansson studies soil that is permanently frozen. Called permafrost, it covers a large portion of Earth’s Arctic surface. It also accounts for almost one-fourth of all land in the Northern Hemisphere.

Permafrost chunk
Permafrost — frozen soil near the Earth’s poles — contains microbes that help suck carbon from the atmosphere.
Nick Bonzey/Wikimedia Commons (CC BY-SA 2.0)

But scientists worry that some permafrost might not be permanent much longer. Human activities in recent decades have been spewing excess carbon dioxide and other greenhouse gases into the atmosphere. Those gases trap heat close to the planet’s surface, driving up temperatures. Not surprisingly, temperatures have been rising all across the globe, especially up north. That could spur big areas of permafrost to melt.

Because permafrost performs a really important job, its loss could lead to many problems.

Tundra is a treeless zone of vegetation in the far North that sits above permafrost. Its soils lock up one-third of all the carbon in soils across the planet. If the permafrost were to melt, dead plant matter in the soil would begin to rot. This would release the carbon that had been in those plants. Some of that carbon would enter the air as carbon dioxide gas. Scientists fear this could lead to even more global warming.

Jansson believes soil bacteria may be key to understanding how fast that plant carbon would be released. She’s a microbiologist at the Pacific Northwest National Laboratory in Richland, Wash. There, she studies the bacteria that live in frozen soils within the Arctic Circle at sites within Alaska and Greenland.

Jansson profile
Janet Jansson sails on a boat off the coast of Greenland, one of the places where she studies permafrost.

Some climate and soil scientists think microbes could speed the thawing of permafrost and its release of greenhouse gases into the atmosphere. Other microbes, however, might slow that process. Jansson is trying to find out how the interplay of microbes affect the release of carbon from soils. “Knowing which bacteria are there and what they’re doing can help us make better predictions,” she says.

A single teaspoon of soil can hold up to one billion bacteria. These microbes form tight-knit communities. This can make it hard to figure out which types of bacteria are present. Some of them also have proven hard to grow in the lab. Now Jansson doesn’t have to. She uses a set of techniques called metagenomics (MEH-tah-jeh-NO-miks). They allow her to analyze the genetic material in her soil samples. By focusing on their genes, she can now identify many of those soil bacteria.  

Jansson hopes to find types of permafrost bacteria that naturally suck carbon dioxide out of the air, pumping it underground where it can be stored (without raising air temperatures). Understanding how these bacteria work might even help scientists invent new ways to reduce levels of carbon dioxide in the atmosphere, she says.

For example, scientists might one day “feed” helpful microbes to permafrost and other soils. These extra bacteria could then soak up more carbon from the atmosphere, storing it underground. This might be one way to fight global warming, she hopes.

dirty boots
It’s amazing what scientists like Janet Jansson can learn about where someone’s been from a tiny bit of dirt stuck to a wheel, tool or boot.

Catching criminals

Jansson studies dirt in cold places. Others are using dirt to solve cold cases.

For nearly two decades, Lorna Dawson studied how different types of soil form. Her career took a turn in 2003, when a police officer came to her lab and asked Dawson to help solve a crime.

The officer wondered whether dirt from the bottom of a suspect’s boot could help pinpoint the location of buried drugs. Dawson analyzed the soil and compared it to soil samples in her lab. She matched molecules of plant matter from the soil on the boot to a particular forest. That’s where the police looked — and found the drugs.

Explains Dawson, “There’s soil on most outdoor crime scenes. It contains hidden clues.” The work she did for the police switched her scientific focus. Today she is a forensic soil scientist. Her lab at the James Hutton Institute is one of the few in the world to focus on using soil in crime-solving. It helps investigators figure out where a crime took place, and where the perpetrator may have gone before or after committing a crime. Tiny bits of material trapped in soil can provide clues. Those bits may come from plants, clothing, algae — even air pollution.

The idea is hardly new. Investigators have been using soil to solve crimes for centuries. Soil even makes an appearance in Arthur Conan Doyle’s 1887 detective novel: A Study in Scarlet. In it, Dr. Watson remarks that based on the color of the mud, Sherlock Holmes can match the splash marks on a pair of trousers to different parts of London.

But for many years, detectives focused on soil’s physical traits. They might look at its color, feel how sticky it was or note how easily it crumbled. Alas, such clues weren’t always reliable. One person’s description of a shade of brown, for instance, could vary from someone else’s.

Lorna Dawson
Lorna Dawson helps convict criminals using the dirt off their boots.
The James Hutton Institute

Dawson saw that by applying some of the scientific methods she used in her lab, she could improve the accuracy of forensic soil analysis. She began by analyzing organic matter in the soil. (Organic matter is the carbon-rich material left after plants and other organisms rot.) She used techniques called chromatography (KROH-muh-TOG-rah-fee) and mass spectrometry. These methods help scientists identify the molecules or elements that make up tiny bits of soil.

These analytical tools let Dawson work now with amazingly tiny samples of soil. For instance, she needs only 20 milligrams (0.0007 ounce) — an amount equal to about the size of a grain of rice — to tell whether a suspect stood in a farm field or the grassy border around it. “It’s such a small amount,” she notes, “that a person leaving the crime scene may not even know they are carrying it out.”

Such tiny clues may help tie up loose ends in a case. She recalls one 2014 case where the soil she analyzed from the bottom of a suspect’s boot helped to convict one of Scotland’s most notorious serial killers. This case had gone unsolved for nearly 40 years. Two 17-year-old girls had been killed. This case held special significance for Dawson. Both had disappeared in 1977 from a street near Dawson’s college dormitory at the University of Edinburgh. Their killings left her terrified to go out at night.

Dawson says being ready to stand up and testify in court is one of the most rewarding parts of her job. “Soil science,” she notes, “is one piece of the investigative jigsaw [puzzle] that can help to bring justice.”

Unearthing the past

Soil can help detectives figure out what happened at a crime scene. It can also help scientists and historians understand the far more distant past.

Kira Hoffman is a graduate student in Canada at the University of Victoria in British Columbia. As a community ecologist, she studies the links between different organisms in an ecosystem to better understand how they connect.

sphagnum hands
This is what sphagnum peat moss looks like. Mined from bogs, it’s a rich source of nutrients, which is why many gardeners add it to their soils.

Her research takes her to the bogs of Canada’s coastal rainforest. Bogs are wetlands with soft, squishy ground. They tend to be filled with a type of moss called sphagnum (SFAG-num). It soaks up water like a sponge.

Bogs aren’t very common, Hoffman says. So they often end up being “these incredible secret ecosystems that people don’t know much about.” She has to canoe for an hour to get to her study site, which is just off the Canadian coastline.

The soils in the bog she studies date back 13,000 years. As she digs down through layers of soil, she finds clues about the plants, animals and people that lived in and around the bog back in time. Hoffman digs big holes in the ground to see the layers. When she dug down into the peat, she noticed perfect lines of charcoal running through some layers. That charcoal was evidence of fire.When sphagnum moss dies and begins to decay, it forms a type of soil called peat. The rotting plant material creates such an acidic environment that the wetland’s peat breaks down very slowly. As a result, a bog’s peat can hold a record of events going back thousands of years, Hoffman explains.

She used a technique called radiocarbon dating to learn how long ago those fires had burned. Radiocarbon dating works by comparing the relative amounts of two forms of carbon, called carbon-12 and carbon-14. One of the forms, carbon-14, is radioactive. Over time, its atoms decay (lose one or more subatomic particles) at a known rate. Those changes convert C-14 to C-12. Scientists can use the ratio of those two forms of carbon to determine the approximate age of come material containing carbon.

Hoffman bog
Kira Hoffman collects soil from a peat bog to learn about ancient people who lived there. She wears netting over her face to protect herself from mosquitoes, gnats and other bog bugs.
Kira Hoffman

Hoffman says the charcoal lines and radiocarbon dating are evidence that Canada’s earliest native peoples used fire to shape the landscape for thousands of years. They may have wanted to clear the land so they had better sight-lines for the animals they hunted, she says.

The bog also contains many types of berries — cranberries, huckleberries and salmonberries. The native peoples of this region, back then, would have eaten these berries. They may have used fire to prune, or cut back, berry bushes. That could have made the berries grow bigger and juicier. (Removing some of the leafy green part allows the plant to put more energy into producing fruit.)

Fire can be a healthy part of an ecosystem, Hoffman explains, causing some plants to grow back thicker and sturdier.

“The bogs were home to these people. Using clues from soil, we can see how they lived,” Hoffman concludes. There are other questions she still hopes to answer about ancient lifestyles. Soil might help researchers discover what Canada’s first inhabitants ate, how they constructed their shelters and even what they did with their garbage, she says.

“Soil is really cool when you start to look closely at it!” she says. Hoffman encourages everyone to explore the ground beneath their feet: “You’ll begin to realize there’s this whole world going on in just a teaspoon of soil.”

Power Words

(more about Power Words)

acidic     An adjective for materials that contain acid. These materials often are capable of eating away at some minerals such as carbonate, or preventing their formation in the first place.

algae     Single-celled organisms, once considered plants (they aren’t). As aquatic organisms, they grow in water. Like green plants, they depend on sunlight to make their food.

Arctic     A region that falls within the Arctic Circle. The edge of that circle is defined as the northernmost point at which the sun is visible on the northern winter solstice and the southernmost point at which the midnight sun can be seen on the northern summer solstice.

Arctic Circle     The northernmost point at which the sun is visible on the northern winter solstice and the southernmost point at which the midnight sun can be seen on the northern summer solstice.

atmosphere     The envelope of gases surrounding Earth or another planet.

atom     The basic unit of a chemical element. Atoms are made up of a dense nucleus that contains positively charged protons and uncharged neutrons. The nucleus is orbited by a cloud of negatively charged electrons.

bacteria     ( singular: bacterium ) Single-celled organisms. These dwell nearly everywhere on Earth, from the bottom of the sea to inside other living organisms (such as plants and animals).

bog     A type of wetland that forms peat from the accumulation of dead plant material — often mosses.

carbon     The chemical element having the atomic number 6. It is the physical basis of all life on Earth. Carbon exists freely as graphite and diamond. It is an important part of coal, limestone and petroleum, and is capable of self-bonding, chemically, to form an enormous number of chemically, biologically and commercially important molecules.

carbon dioxide (or CO2)    A colorless, odorless gas produced by all animals when the oxygen they inhale reacts with the carbon-rich foods that they’ve eaten. Carbon dioxide also is released when organic matter burns (including fossil fuels like oil or gas). Carbon dioxide acts as a greenhouse gas, trapping heat in Earth’s atmosphere. Plants convert carbon dioxide into oxygen during photosynthesis, the process they use to make their own food.

chromatography     Separation and detection of chemical compounds as a result of their having traveled at different rates according to their different attractions to the matter that carries them (such as a flowing liquid or gas).

climate     The weather conditions that typically exist in one area, in general, or over a long period.

climate change     Long-term, significant change in the climate of Earth. It can happen naturally or in response to human activities, including the burning of fossil fuels and clearing of forests.

decay     The process (also called “rotting”) by which a dead plant or animal gradually breaks down as it is consumed by bacteria and other microbes. (for radioactive materials) The process whereby a radioactive isotope — which means a physically unstable form of some element — sheds energy and subatomic particles. In time, this shedding will transform the unstable element into a slightly different but stable element. For instance, uranium-238 (which is a radioactive, or unstable, isotope) decays to radium-222 (also a radioactive isotope), which decays to radon-222 (also radioactive), which decays to polonium-210 (also radioactive), which decays to lead-206 — which is stable. No further decay occurs. The rates of decay from one isotope to another can range from timeframes of less than a second to billions of years.

ecology     A branch of biology that deals with the relations of organisms to one another and to their physical surroundings. A scientist who works in this field is called an ecologist.

ecosystem     A group of interacting living organisms — including microorganisms, plants and animals — and their physical environment within a particular climate. Examples include tropical reefs, rainforests, alpine meadows and polar tundra.

element     (in chemistry) Each of more than one hundred substances for which the smallest unit of each is a single atom. Examples include hydrogen, oxygen, carbon, lithium and uranium.

environment     The sum of all of the things that exist around some organism or the process and the condition those things create. Environment may refer to the weather and ecosystem in which some animal lives, or, perhaps, the temperature and humidity (or even the placement of components in some electronics system or product).

forensics    (adj. forensic) The use of science and technology to investigate and solve crimes.

genetic     Having to do with chromosomes, DNA and the genes contained within DNA. The field of science dealing with these biological instructions is known as genetics. People who work in this field are geneticists.

global warming     The gradual increase in the overall temperature of Earth’s atmosphere due to the greenhouse effect. This effect is caused by increased levels of carbon dioxide, chlorofluorocarbons and other gases in the air, many of them released by human activity.

graduate student     Someone working toward an advanced degree by taking classes and performing research. This work is done after the student has already graduated from college (usually with a four-year degree).

greenhouse     A light-filled structure, often with windows serving as walls and ceiling materials, in which plants are grown. It provides a controlled environment in which set amounts of water, humidity and nutrients can be applied — and pests can be prevented entry.

Greenland     The world’s largest island, Greenland sits between the Arctic Ocean and North Atlantic. Although it is technically part of North America (sitting just east of Northern Canada), Greenland has been linked more politically to Europe. Indeed, Vikings arrived in Greenland around the 10th century, and for a time the island was a colony of Denmark. In June 2009, Greenland became an independent nation. Ice covers roughly 80 percent of Greenland. Indeed, the Greenland ice sheet is the world’s largest. If its frozen water were to melt, it could raise sea levels around the world by 6 meters (about 20 feet). Although this is the 12th biggest nation (based on surface area), Greenland averages the fewest people per square kilometer of its surface area.

mass spectrometry     A technique used to determine the chemical makeup of a source material.

microbe     Short for microorganism. A living thing that is too small to see with the unaided eye, including bacteria, some fungi and many other organisms such as amoebas. Most consist of a single cell.

microbiology     The study of microorganisms, principally bacteria, fungi and viruses. Scientists who study microbes and the infections they can cause or ways that they can interact with their environment are known as microbiologists.

mineral     Crystal-forming substances that make up rock, such as quartz, apatite or various carbonates. Most rocks contain several different minerals mish-mashed together. A mineral usually is solid and stable at room temperatures and has a specific formula, or recipe (with atoms occurring in certain proportions) and a specific crystalline structure (meaning that its atoms are organized in regular three-dimensional patterns). (in physiology) The same chemicals that are needed by the body to make and feed tissues to maintain health.

molecule     An electrically neutral group of atoms that represents the smallest possible amount of a chemical compound. Molecules can be made of single types of atoms or of different types. For example, the oxygen in the air is made of two oxygen atoms (O2), but water is made of two hydrogen atoms and one oxygen atom (H2O).

moss     A small, flowerless green plant that lacks true roots. It tends to grow as carpets or rounded cushions in damp habitats. It can reproduce asexually, through fragmentation, or by means of spores released from stalked capsules.

native     Associated with a particular location; native plants and animals have been found in a particular location since recorded history began. These species also tend to have developed within a region, occurring there naturally (not because they were planted or moved there by people). Most are particularly well adapted to their environment.

nutrient     A vitamin, mineral, fat, carbohydrate or protein that a plant, animal or other organism requires as part of its food in order to survive.

organic     (in chemistry) An adjective that indicates something is carbon-containing; a term that relates to the chemicals that make up living organisms. (in agriculture) Farm products grown without the use of non-natural and potentially toxic chemicals, such as pesticides.

organism     Any living thing, from elephants and plants to bacteria and other types of single-celled life.

Pacific     The largest of the world’s five oceans. It separates Asia and Australia to the west from North and South America to the east.

peat     Largely decomposed plant material that develops in the absence of oxygen within a water-saturated site, such as a bog. When dried out, peat can be burned as a low-grade fuel.

permafrost     Soil that remains frozen for at least two consecutive years. Such conditions typically occur in polar climates, where average annual temperatures remain close to or below freezing.

physical     (adj.) A term for things that exist in the real world, as opposed to in memories or the imagination. It can also refer to properties of materials that are due to their size and non-chemical interactions (such as when one block slams with force into another).

radioactive     An adjective that describes unstable elements, such as certain forms (isotopes) of uranium and plutonium. Such elements are said to be unstable because their nucleus sheds energy that is carried away by photons and/or and often one or more subatomic particles. This emission of energy is by a process known as radioactive decay.

radiocarbon dating     A process to determine the age of material from a once-living object. It is based on comparing the relative proportion, or share, of the carbon-12 to carbon-14. This ratio changes as radioactive carbon-14 decays and is not replaced.

rainforest     Dense forest rich in biodiversity found in tropical areas with consistent heavy rainfall.

ratio     The relationship between two numbers or amounts. When written out, the numbers usually are separated by a colon, such as a 50:50. That would mean that for every 50 units of one thing (on the left) there would also be 50 units of another thing (represented by the number on the right).

tundra     A cold, usually lowland area in far northern regions. The subsoil is permanently frozen. In summer, a tundra's top layer of soil thaws and can support low-growing mosses, lichens, grasses, shrubs and trees (some only a few centimeters high).

wetland     As the name implies, this is a low-lying area of land either soaked or covered with water much of the year. It hosts plants and animals adapted to live in, on or near water.


Journal: K.M. Hoffman et al. Seven hundred years of human-driven and climate-influenced fire activity in a British Columbia coastal temperate rainforest. Royal Society Open Science. Published online October 26, 2016. doi: 10.1098/rsos.160608.