Explainer: What is the electric grid? | Science News for Students

Explainer: What is the electric grid?

Round-the-clock work keeps the giant network going so the lights stay on
Jan 24, 2019 — 6:40 am EST
a photo of high-voltage electrical lines stretching towards the horizon to meet the support towers closer to the horizon

High-voltage electric lines are part of the giant network that makes up the electric grid.

Chris Hunkeler/Flickr (CC BY-SA 2.0)

Flip a switch at home, and a light or gadget comes on. In most cases, the electricity to power that device came from a huge system called the electric grid. Here’s how it works.

Maybe you’ve built an electric circuit with a battery and a light bulb. Current flows from the battery through wire to the light bulb. From there it flows through more wire and back to the battery. You also can set up the wires to connect multiple light bulbs so some can be on even if others are off. The electric grid uses a similar idea, but it’s more complex. A lot more.

Electricity gets made at lots of places: Power plants that burn oil, gas or coal. Nuclear plants. Solar panel arrays. Wind farms. Dams or falls over which water cascades. And more. In most places, the grid connects hundreds or more of these places to a vast network of wires and equipment. Electric current can travel along many paths within the network. Power also can flow either way along wires. Equipment tells the current where to go.

Two-way wires also allow the use of alternating current, or AC. Electric grids in most countries use AC current. AC means the current switches direction many times per second. With AC, equipment called transformers can change the voltage, or force of the current. High voltage is more efficient for sending electricity over long distances through wires. Other transformers then step the voltage down to lower, safer levels before the current travels on to homes and businesses.

A balancing act

The electric grid is so big and complex that it needs whole buildings full of people and machines to control it. Those groups are called grid operators.

A grid operator is a bit like a high-tech traffic cop. It makes sure power goes from electricity producers (known as generators) to where people will need it. The United States’ lower 48 states have 66 of these traffic cops. They work in three major regions. The largest span parts of more than a dozen states! Local electric companies do a similar job in their areas.

There’s a catch. “We need to keep things perfectly balanced,” explains electrical engineer Chris Pilong. He works at PJM Interconnection in Audubon, Penn. PJM runs the grid for all or parts of 13 states, plus the District of Columbia.

An overhead photo showing the inside of a grid operator control room. There are several desks with workers laid out on the floor and the far wall is covered in screens showing the information being monitored.
Engineers use computers to track what’s going on with the region in this control room for grid operator PJM in Valley Forge, Pa.
Courtesy of PJM

By balanced, Pilong means that the amount of electricity supplied at any time must match the amount used. Too much power could overheat wires or damage equipment. Too little power can lead to problems such as blackouts and brownouts. Blackouts are losses of all power to some region. Brownouts are partial drops in the system’s ability to supply power.

Computers help engineers get the match right.

Meters, gauges and sensors constantly monitor how much electricity people are using. Computer programs also use data about electricity use during periods in the past when the hour, day and weather were similar. All that information helps the grid’s traffic cops figure out how much electricity needs to go on the grid to meet people’s needs. Grid operators make those forecasts from minute to minute, hour to hour and day to day. Grid operators then tell producers how much more power — or less — to supply. Some big customers also agree to cut back their energy use when needed.

The system isn’t perfect and things do go wrong. Indeed, grid operators expect problems will develop now and again. “It’s a normal occurrence,” says Ken Seiler, who heads up system planning at PJM. “But it’s more the exception than the rule.” If one power plant suddenly stops putting its power onto the grid, others are usually on standby. They’re ready to supply electricity as soon as the grid operator gives the go-ahead.

Most power outages actually take place at the local level. Squirrels chew through wires. A storm brings down power lines. Equipment somewhere overheats and catches on fire. But extra trouble can pop up when extreme weather or other emergencies happen.

Hurricanes, floods, tornadoes and other events can all bring down parts of the system. Droughts and heat waves can spike the use of air conditioners — big energy hogs! Different kinds of extreme weather will become more frequent as climate change intensifies. 

The risk of physical or cyber-attacks presents additional threats. Even space weather can make problems flare up on the grid. Beyond all this, many parts of the power-grid system are more than 50 years old. They can just break down.

Looking ahead

Scientists and engineers are working to prevent problems. But when problems do occur, they want to get the lights back on as soon as possible.

Engineers also are working to adapt the grid to a changing electricity supply. Natural-gas prices have fallen because of a recent boom in gas production in the United States and other countries. As a result, older coal and nuclear plants have trouble competing with the low-cost power generated in plants that run on natural gas. Meanwhile, more wind power, solar energy and other renewable resources are joining the mix. Prices for these clean-energy alternatives have fallen a lot in recent years.

Battery storage also will let renewable energy play a bigger role. Batteries can store extra electricity from solar panels or wind farms. Then the energy can be used regardless of the time of day or the weather at the moment.

At the same time, the grid will rely even more on computers so that many systems can “talk” to each other. More advanced equipment will go onto the system too. Some “smart switches” will get the lights back on more quickly when there’s a problem. Others can more nimbly steer electricity onto the grid from renewable energy sources. Meanwhile, sensors and other devices will pinpoint problems, boost efficiency and more.

Many customers want more data as well. Some want to see their energy use detailed in 15-minute chunks. That can help them focus their energy-saving efforts. Many people also want to pay more or less based on the time of day that they actually use electricity.

“Smart grid” initiatives aim to deal with all those issues. Research continues at universities and other research centers. Ideally, all of this work can make the grid more reliable and resilient.

Power Words

(more about Power Words)

alternating current     (in electricity) Often abbreviated AC, alternating current is a flow of electrons that reverses direction at regular intervals many times a second. Most household appliances run off of AC power. But many portable devices, like music players and flashlights, run off of the direct current (DC) power provided by batteries.

array     A broad and organized group of objects. Sometimes they are instruments placed in a systematic fashion to collect information in a coordinated way. The term can even apply to a range of options or choices.

battery     A device that can convert chemical energy into electrical energy.

blackout     (in energy) The loss of electric power to a broad area, and so named because all of the electric lights in the affected area will blink off when this occurs (unless they have a backup electric generator).

circuit     A network that transmits electrical signals. In the body, nerve cells create circuits that relay electrical signals to the brain. In electronics, wires typically route those signals to activate some mechanical, computational or other function.

climate     The weather conditions that typically exist in one area, in general, or over a long period.

climate change     Long-term, significant change in the climate of Earth. It can happen naturally or in response to human activities, including the burning of fossil fuels and clearing of forests.

computer program     A set of instructions that a computer uses to perform some analysis or computation. The writing of these instructions is known as computer programming.

current      (in electricity) The flow of electricity or the amount of charge moving through some material over a particular period of time.

cyber     A prefix that refers to computers or to a type of system in which computerized or online communication occurs.

develop     To emerge or come into being, either naturally or through human intervention, such as by manufacturing.

digital     (in computer science and engineering)  An adjective indicating that something has been developed numerically on a computer or on some other electronic device, based on a binary system (where all numbers are displayed using a series of only zeros and ones).

drought     An extended period of abnormally low rainfall; a shortage of water resulting from this.

electrical engineer     An engineer who designs, builds or analyzes electrical equipment.

electricity     A flow of charge, usually from the movement of negatively charged particles, called electrons.

engineer     A person who uses science to solve problems. As a verb, to engineer means to design a device, material or process that will solve some problem or unmet need.

gauge     A device to measure the size or volume of something. For instance, tide gauges track the ever-changing height of coastal water levels throughout the day. Or any system or event that can be used to estimate the size or magnitude of something else. (v. to gauge) The act of measuring or estimating the size of something.

generator     A device used to convert mechanical energy into electrical energy.

grid      (in electricity) The interconnected system of electricity lines that transport electrical power over long distances. In North America, this grid connects electrical generating stations and local communities throughout most of the continent.

monitor     To test, sample or watch something, especially on a regular or ongoing basis.

network     A group of interconnected people or things. (v.) The act of connecting with other people who work in a given area or do similar thing (such as artists, business leaders or medical-support groups), often by going to gatherings where such people would be expected, and then chatting them up. (n. networking)

outage     (in energy) A term for a region that temporarily loses power (usually electric power) or the ability to operate.

physical     (adj.) A term for things that exist in the real world, as opposed to in memories or the imagination. It can also refer to properties of materials that are due to their size and non-chemical interactions (such as when one block slams with force into another).

power plant     An industrial facility for generating electricity.

renewable energy     Energy from a source that is not depleted by use, such as hydropower (water), wind power or solar power.

resilient     (n. resilience) To be able to recover fairly quickly from obstacles or difficult conditions. (in materials) The ability of something to spring back or recover to its original shape after bending or otherwise contorting the material.

risk     The chance or mathematical likelihood that some bad thing might happen. For instance, exposure to radiation poses a risk of cancer. Or the hazard — or peril — itself. (For instance: Among cancer risks that the people faced were radiation and drinking water tainted with arsenic.)

sensor     A device that picks up information on physical or chemical conditions — such as temperature, barometric pressure, salinity, humidity, pH, light intensity or radiation — and stores or broadcasts that information. Scientists and engineers often rely on sensors to inform them of conditions that may change over time or that exist far from where a researcher can measure them directly. (in biology) The structure that an organism uses to sense attributes of its environment, such as heat, winds, chemicals, moisture, trauma or an attack by predators.

space weather     Conditions on the sun, in the solar wind and within Earth’s upper atmosphere that can affect technologies on Earth and that have the potential to endanger human health. Triggering these weather events are the stream of plasma, or solar wind, emitted by the sun. In addition, there are clouds of material spewed by the sun, known as coronal mass ejections. Together, these can contribute to large magnetic and electrical storms in Earth’s upper atmosphere.

transformer     (in physics and electronics) A device that changes the voltage of an electrical current.

transmission     Something that is conveyed or sent along. (in mechanics) In a liquid-fueled vehicle, the machinery used to transfer power from the engine to the drive wheels. (In medicine) To spread a disease or toxic agent.

voltage     A force associated with an electric current that is measured in units known as volts. Power companies use high-voltage to move electric power over long distances.

weather     Conditions in the atmosphere at a localized place and a particular time. It is usually described in terms of particular features, such as air pressure, humidity, moisture, any precipitation (rain, snow or ice), temperature and wind speed. Weather constitutes the actual conditions that occur at any time and place. It’s different from climate, which is a description of the conditions that tend to occur in some general region during a particular month or season.