Spidey sense: They can hear you! | Science News for Students

Spidey sense: They can hear you!

Even without eardrums, jumping spiders can pick up some fairly distant airborne sounds
Nov 10, 2016 — 12:00 pm EST
jumping spider

A new study finds that one species of tiny jumping spider can hear some sounds from several meters (yards) away. They’re sensitive to low frequencies that sound like the drone of an attacking wasp.

G. Menda, Hoy Lab at Cornell

The sudden sound of chair squeaks in a research lab tipped off researchers to a new world of eavesdroppers.

Unlike people and many other animals, spiders lack eardrums. But that doesn’t keep them from hearing sounds moving through the air. These animals pick up on vibrations humming through solid objects, like web silk and leaves. To do this, they rely on super-sensitive hairs on their legs.

Biologists had assumed, however, that spiders would only “hear” such nearby sounds — ones from no more than a few centimeters (an inch or so) away.

They were wrong.

Nerve cells in the brain of a tiny jumping spider can pick up airborne sounds from at least three meters (almost 10 feet) away, reports Ronald Hoy. A neurobiologist, Hoy works at Cornell University in Ithaca, N.Y.

The spider that his group studies is known as Phidippus audax (FID-dih-pus AW-dax). Hoy’s team had inserted tiny electrodes into the spiders’ brains. When somebody accidentally scraped the floor while moving a chair, the spider responded. Or at least its brain did. The sound provoked a burst of activity in the brain’s nerve cells. Called neurons, those cells were located in an area known to work on processing sound.

This surprised the scientists. Indeed, it prompted them to probe that sound connection further.

Those experiments showed that spiders could hear even relatively quiet sounds — similar to human conversation — and from several meters (yards) away!

The researchers also tested the spidey hearing in a different way. They broadcast a low droning noise. It resembled the wing sound of an approaching predatory wasp. In an instant, the spiders hunkered. They also ceased all movement. Clearly, they heard the sound and were on the alert.

The team reported its findings online October 13 in Current Biology.

A need for steady hands


Jumping spiders have brains about the size of poppy seeds. So inserting an electronic probe to record activity within the tiny part related to sound was not easy. Hoy credits the probing’s success to Cornell coauthor Gil Menda. He has rock-steady hands.

First, Menda says, “I close my eyes.” Then he listens his way along, one slight nudge of the probe at a time. He’s trying to find the sound-processing cells. He knows he’s on the right track if faint popping sounds come out of the monitor. It’s set to translate the nerve activity into sounds that people can hear. As the probe gets closer to the right place, the popping gets louder.

When Menda first realized a spider’s brain reacted to a chair squeak, he and study coauthor Paul Shamble started clapping their hands. (Shamble is now at Harvard University.) Then they backed away from the spider and clapped again. The claps didn’t seem as if they should have made the furniture shake, creating vibrations that the spiders feet would pick up. Yet the spider’s brain did register the sound — even when the scientists had backed even further away, clapping from the hallway.

It was possible, though, that such clapping or other test sounds might confuse any interpretation of the tests by slightly vibrating the test equipment holding the spiders. In that case, the spiders might have “heard” through their feet, not by sound waves ruffling their leg hairs.

To test that possibility, the researchers placed the spiders on a table protected from vibrations. And still the spiders heard the sounds — this time, clearly, through the air.

Then the scientists broadcast various other airborne sounds. And neuron tests showed the spiders didn’t seem to hear all of them equally. The spiders were really sensitive to low-pitched sounds.

Jumping spiders are sensitive to predator’s vibe

Then the researchers took this special setup to the lab of coauthor Ronald Miles. He’s at the State University of New York at Binghamton. They placed their spiders into a chamber that blocks out nearly all outside noise. “It’s really eerie," Hoy says of this quiet.

Whether a sound is high or low is referred to as its pitch. And that pitch depends on the length of the sound's waves. Scientists measure the length of waves in hertz (or cycles per second). Jumping spiders picked up rumbly tones in a narrow range. They seemed to hear best those sounds between 70 and 200 hertz, Hoy and his colleagues report. People hear best between 500 hertz and 1 kilohertz. (One kilohertz is equal to 1,000 hertz.) But people can detect tones across a far broader range than that — from 50 hertz to 15 kilohertz.

Story continues below video.

When researchers play a low-pitched tone similar to the drone of a predatory wasp, a tiny jumping spider freezes (red pointer appears). The behavior, along with brain recordings, reveal that the spiders are sensitive to airborne sounds from meters (yards) away.
G. Menda, Hoy Lab at Cornell

Hoy and his colleagues suspect spiders hear low rumbles, such as a wasp’s drone, much as they do the vibrations of a web: with specialized leg hairs. And their experiments support that idea. They found that making a hair twitch could cause a sound-responsive neuron in the spiders’ brains to fire. 

Hoy says the benefits of hearing an approaching wasp might have favored the evolution of what these spiders hear. Indeed, they have good reason to be alert to these flying predators. Wasps carry off jumping spiders and immobilize them with venom, Hoy says. A mother wasp then tucks an unmoving — but still alive —spider into each cell of her nest. Eventually, a wasp egg will hatch in the nest and feed on fresh spider flesh.

Wasps are major predators of many kinds of spiders, notes Ximena Nelson. An expert in jumping spiders, she works at the University of Canterbury in Christchurch, New Zealand. If detecting the wing drones of wasps was important in the evolution of the spiders’ hearing, then other species of these eight-legged animals might do long-distance eavesdropping, too.

Power Words

(for more about Power Words, click here)

biology     The study of living things. The scientists who study them are known as biologists.

broadcast     To cast — or send out — something over a relatively large distance. A farmer may broadcast seeds by flinging them by hand over a large area. A loudspeaker may send sounds out over a great distance. An electronic transmitter may emit electromagnetic signals over the air to a distant radio, television or other receiving device. And a newscaster can broadcast details of events to listeners across a large area, even the world.

cell     The smallest structural and functional unit of an organism. Typically too small to see with the naked eye, it consists of watery fluid surrounded by a membrane or wall. Animals are made of anywhere from thousands to trillions of cells, depending on their size. Some organisms, such as yeasts, molds, bacteria and some algae, are composed of only one cell.

coauthor     One of a group (two or more people) who together had prepared a written work, such as a book, report or research paper. Not all coauthors may have contributed equally.

colleague     Someone who works with another; a co-worker or team member.

evolution     (v. to evolve) A process by which species undergo changes over time, usually through genetic variation and natural selection. These changes usually result in a new type of organism better suited for its environment than the earlier type. The newer type is not necessarily more “advanced,” just better adapted to the conditions in which it developed.

hertz     The frequency with which something (such as a wavelength) occurs, measured in the number of times the cycle repeats during each second of time.

monitor    To test, sample or watch something, especially on a regular or ongoing basis.  (in computing) The screen on which data and information is displayed visually, and often with sound.

nerve     A long, delicate fiber that communicates signals across the body of an animal. An animal’s backbone contains many nerves, some of which control the movement of its legs or fins, and some of which convey sensations such as hot, cold, pain.

neurobiologist     Scientist who studies cells and functions of the brain and other parts of the nervous system.

neuron     The impulse-conducting cells that make up the brain, spinal column and nervous system.

pitch     (in acoustics) The word musicians use for sound frequency. It describes how high or low a sound is, which will be determined by the vibrations that created that sound.

predator     (adjective: predatory) A creature that preys on other animals for most or all of its food.

range     The full extent or distribution of something. For instance, a plant or animal’s range is the area over which it naturally exists. (in math or for measurements) The extent to which variation in values is possible. Also, the distance within which something can be reached or perceived.

silk     A fine, strong, soft fiber spun by a range of animals, such as silkworms and many other caterpillars, weaver ants, caddis flies and — the real artists — spiders.

sound wave     A wave that transmits sound. Sound waves have alternating swaths of high and low pressure.

species     A group of similar organisms capable of producing offspring that can survive and reproduce.

spider     A type of arthropod with four pairs of legs that usually spin threads of silk that they can use to create webs or other structures.

tone     Changes in a voice that express a particular feeling or mood.

venom     A poisonous secretion of an animal, such as a snake, spider or scorpion, usually transmitted by a bite or sting.

wavelength     The distance between one peak and the next in a series of waves, or the distance between one trough and the next. Visible light — which, like all electromagnetic radiation, travels in waves — includes wavelengths between about 380 nanometers (violet) and about 740 nanometers (red). Radiation with wavelengths shorter than visible light includes gamma rays, X-rays and ultraviolet light. Longer-wavelength radiation includes infrared light, microwaves and radio waves.


  • MS-PS4-2
  • MS-LS1-3
  • MS-LS2-3
  • MS-ESS3-3
  • HS-PS4-1
  • HS-PS4-3
  • HS-LS1-2
  • HS-LS2-7
  • HS-LS2-8
  • HS-ESS3-6
  • HS-ETS1-3


Journal:​ ​​ P.S. Shamble et al. Airborne acoustic perception by a jumping spiderCurrent Biology. Published online October 13, 2016. doi: 10.1016/j.cub.2016.08.041.