What scientists hope to learn from Great American Eclipse | Science News for Students

What scientists hope to learn from Great American Eclipse

The August 21 event offers a perfect chance to investigate big questions about our star
Aug 21, 2017 — 7:05 am EST

This time-lapse photo shows the stages of a November 2012 solar eclipse in the South Pacific.


A total eclipse of the sun is not all that rare. One is visible from somewhere on Earth every 18 months or so. Most, however, go almost entirely unseen. Often the narrow zone of totality — where the sun is completely blocked out — falls over the oceans. Or cloud cover blocks precious minutes of totality over land.

eclipse poster
This poster, which you can download from NASA here, highlights the states where a totality would occur.

But this year’s Great American Eclipse, on August 21, will offer 93 minutes of totality on solid ground. (Each location gets about two minutes). That means more chances for land-based observers to have clear skies. It also provides a rare opportunity. For the full 90 minutes it takes the eclipse to travel from Oregon to South Carolina, people can watch the dance and sway of the sun’s corona. That’s the outer edge of the atmosphere jacketing the star.

With the sun’s otherwise blazing light covered up, that atmosphere suddenly becomes visible. Loops and whorls of plasma — energetic streams of charged subatomic particles — can be seen flying out from the sun’s surface. Many double back or twist and bend.

Not surprisingly, this corona will be a featured spectacle of this year’s eclipse.

In fact, that momentary solar shadowing will be much more than a spectacle. As the moon passes in front of the sun, scientists will be doing some serious work. A fleet of instruments will turn skyward to study parts of our star that usually are invisible.

But is there really any science left to do? Historically, eclipses were the only way to get a good look at parts of the sun. These days, space telescopes monitor the sun in multiple wavelengths, 24/7. So what else is there to learn?

A lot, it turns out.

“Everybody’s taken in by the beautiful dark sky” of an eclipse, says Padma Yanamandra-Fisher. “But that part is so dominant that people don’t always appreciate the nuances of the science you can actually do.” Yanamandra-Fisher is an astronomer at the Space Science Institute’s branch in Rancho Cucamonga, Calif. She will observe the event from Carbondale, Ill.

Many of the answers that she and other researchers seek have to do with the inner corona. It’s the part of the sun’s atmosphere that starts right at the solar surface and extends on out to about 2.5 times the radius of the sun.

Here, a lot of the most interesting solar physics takes place. It’s where the solar wind starts. It’s where loopy magnetic structures are anchored. It’s where space weather gets its start. And it’s where powerful ejections of mass become launched into space — ones that can knock out electric-power grids on Earth.

Today’s space telescopes can watch the outer corona all the time. They employ a disk called an occulter to block out the sun’s brightness. But it’s no match for a true solar eclipse. By lucky coincidence, the moon can appear exactly the right size in the sky to block out the solar disk, and no more.

Jay Pasachoff is an astronomer at Williams College in Williamstown, Mass. “The moon makes a better eclipse than humans have been able to do,” he notes. So he plans to take advantage of it. He will observe this year’s event — his 34th total eclipse — from Salem, Ore.

Story continues below image. 

total eclipse corona
In a total solar eclipse, the moon blocks out the sun, exposing the sun's outer layer, the corona.
S. Habbal et al

Where does the solar wind come from?

The sun can’t keep its hands to itself. A constant flow of charged particles streams away from it at hundreds of kilometers per second. That solar wind batters vulnerable planets in its path. Indeed, it is thought to have stripped away much of the Martian atmosphere. And it’s had a direct role in shaping life in the solar system. Our planet is protected from a fate similar to Mars' only by its strong magnetic field. That field guides the solar wind around Earth.

But scientists don’t understand some key details of how this wind works. It originates in an area where the sun’s gaseous surface meets its atmosphere. Like winds on Earth, the solar wind is gusty. It speeds and slows in different areas. Right now, no one knows why the wind is fickle. But some answers might emerge during the eclipse.

Nat Gopalswamy is an astronomer at NASA’s Goddard Spaceflight Center in Greenbelt, Md. (NASA is short for the National Aeronautics and Space Administration.) He and his colleagues will test a new instrument, called a polarimeter (PO-luh-RIM-eh-tur). It was built to measure the temperature and speed of electrons leaving the sun. Measurements will start close to the sun’s surface and extend out to around 5.6 million kilometers (3.5 million miles). That’s about eight times the radius of the sun.

“We should be able to detect the baby solar wind,” Gopalswamy says.

The polarimeter will be set up at a high school in Madras, Ore. It will separate out light that has been polarized — had its electric field organized in one direction — from light whose electric field goes in all sorts of directions. Electrons scatter polarized light more than non-polarized light. So that observation will give the scientists a bead on what the electrons are doing. And that should offer clues to  how fast the wind flows, how hot it is and even where it comes from.

The team first tried out an earlier version of this instrument in 1999. It was during an eclipse in Turkey. But that instrument required the researchers to flip through three different polarization filters to capture all the data on polarized light that they sought. Cycling through the filters using a hand-turned wheel was slow and clunky. It's also a challenge when the totality lasts only two minutes or so.

The team’s upgraded instrument has been designed to gather data through all three filters and in four wavelengths of light at once. Because the corona morphs quickly, “we have to take these images as close in time as possible,” Gopalswamy explains. One exposure will take 2 to 4 seconds, plus a 6-second wait between filters. That will give the team about 36 images.

This isn’t the polarimeter’s first time in the field. Gopalswamy and his team took it all the way to Indonesia for a solar eclipse in March 2016. “That experiment failed because of noncooperation from nature,” Gopalswamy says. “Ten minutes before the eclipse, the rain started pouring down.”

This year, they chose Madras because historically it’s the least cloud-covered place on the eclipse path. But they’re still crossing their fingers for clear skies.

Why is the corona so hot?

The big star of the August 21 light show will be the sun’s corona. From its delicate and filmy look, you might expect it to be where the sun goes to cool off. That couldn’t be more wrong.

The corona is a mysteriously sizzling inferno. The sun simmers at about 5,500° Celsius (9,900° Fahrenheit) at its visible surface, the photosphere (FO-toh-sfeer). But the gas just above the photosphere runs some 10,000 °C (18,000 °F). Then, in the corona, the temperature makes an abrupt hike to several million degrees!

Paul Bryans is a solar scientist at the National Center for Atmospheric Research in Boulder, Colo. “It’s counterintuitive” — the opposite of what you’d expect — “that as you move away from a heat source, it gets warmer,” he notes. Why the corona should do that is “one of the longest unanswered questions in all of solar physics,” he says.

The corona is also diffuse. And that makes its scorching temps even stranger. The most basic ways to heat a material rely on particles crashing into each other. But the corona is too thin for that to work.

Such extreme temperatures must have something to do with the corona’s magnetic field. That is probably where all that energy is stored. Once there, the energy has a hard time escaping — radiating into space. So it just builds up.

“We know there’s energy coming in, and it’s hard to get it out unless you get very hot,” says Caspi. “What we don’t understand is how that energy gets into the corona in the first place.”

magnetic sun
Scientists used magnetic measurements of the sun to create this map, in which magnetic fields are represented by looping lines.

Physicists have several ideas. Magnetic field lines surround a magnet (you can see this if you drop iron filings around the edges of a bar magnet). Those field lines also exist in the corona. Maybe loops of them vibrate like guitar strings. That might heat things up, a bit like how a microwave oven heats food. Maybe the loops' magnetic anchors on the sun’s surface braid and twist the magnetic field above them. That might dump  in energy that is then continually radiated away (as from the heating element in a toaster).

Or maybe nanoflares or jets of solar gases — called spicules — carry energy away from the photosphere, dumping it into the corona. The formation of new coronal loops that connect to existing ones could dump in enough extra energy to heat up the plasma.

In search of answers, dozens of groups of scientists across the country will deploy telescopes equipped with filters during this year’s eclipse. They will attempt to pick out polarized light, infrared light or electron-deprived iron atoms. Bryans and his colleagues will be on a mountaintop near Casper, Wyo., in the path of totality.

Scientists have thought up many  mechanisms  that could contribute to the corona’s extreme heat. It’s difficult to declare just one  as the single most important one.  Ultimately, the solar eclipse is the best chance scientists will have to test them. It’s the only time the corona will be the star of the solar show.

What can the eclipse tell us about the corona’s magnetic field?

Corona is Latin for “crown.” And during an eclipse, the dazzling corona certainly gives every appearance that it’s crowning the sun. Its hot, bright plasma is a radiant, ever-changing spectacle. Its bright loops and whorls bend, sway and snap. Sometimes, one of those loops breaks off. That sends high-energy material rippling through space in what is known as a coronal mass ejection. If flung toward Earth, these bursts can trigger auroras. The energy deposited when they enter our planet’s atmosphere also can damage satellites and knock out electric-power grids.

It’s the motion of charged particles — like those in the corona’s plasma — that create the sun’s magnetic field. And it, in turn, choreographs the corona’s disordered dance.

In terms of the corona, the magnetic field, well, “it’s the heart of everything,” says Jenna Samra. She is a graduate student in applied physics at Harvard University in Cambridge, Mass.

That magnetic field at the sun’s surface is well known. But the corona’s field is so weak, scientists barely know it at all. Understanding the sun’s magnetic inner life could be key to understanding and predicting the corona’s dramatic activity.

During the 2017 eclipse, Samra and others will observe the corona at wavelengths (or radiation) between 1 and 4 micrometers — in the infrared portion of the light spectrum. These are light wavelengths emitted when a heavy element like magnesium, iron, sulfur or silicon loses an electron to the hot plasma around it.

Magnetic fields of different strengths make those electrons spiral in particular ways. That spiraling changes the orientation of the light as it travels toward Earth. In the end, to probe the magnetic field, scientists will have to measure this light orientation, or polarization.

Bryans and Philip Judge, who also works at the National Center for Atmospheric Research, will be part of a research team that trucks a sensitive instrument to the top of Casper Mountain in Wyoming. This device, a spectrometer (Spek-TRAH-meh-tur), can split sunlight into its component wavelengths. 

“The [sun’s] whole infrared spectrum has never been acquired before. And that’s one of the things we want to do,” Judge says.

Samra will have another infrared spectrometer at an altitude of about 15 kilometers (9.3 miles). Her team, including her adviser Edward DeLuca, and their instrument will take off on a jet owned and flown by the National Science Foundation. Water in Earth’s atmosphere absorbs some of the infrared wavelengths they’re interested in. The extra height will get them above most of that water. They’ll fly east from Chattanooga, Tenn., in the shadow of the moon. That will extend the eclipse a bit for them. The team will get four minutes of the moon entirely blocking the sun. This should give them more time to collect data.

The spectrum these teams measure during the eclipse won’t translate immediately to a measurement of the strength or shape of the sun’s magnetic field. But it will help identify which wavelengths are easiest to observe. That in turn will set the stage for the work of future telescopes, like the Daniel K. Inouye Solar Telescope. It is under construction on the Hawaiian island of Maui, and due to start up in 2019.

“Half of its mission will be to observe the infrared and the [solar] corona. But right now we don’t know what it should look for,” Judge says. Measurements made during this year’s eclipse will help point the way.

Story continues below image. 

sun corona
The Solar Dynamics Observatory can view the sun in many different wavelengths of light (shown here), letting scientists see various features. 
NASA Goddard Space Flight Center

Why are the loop structures in the corona so organized?

During the eclipse, the corona’s orderly network of loops, fans and streamers become visible. These wispy structures arise from the magnetic field on the sun’s visible surface. 

“It’s not a static surface like the ground,” explains Amir Caspi. “It’s more like an ocean,” notes this solar physicist at the Southwest Research Institute in Boulder, Colo. “And not just an ocean. It’s like a boiling ocean!”

corona sun
NASA's Solar Dynamics Observatory imaged these coronal loops over a two-day period in 2014. Scientists don't know why the loops aren't tangled together.
Solar Dynamics Observatory/NASA

Because the corona’s loops and streamers all originate at the turbulent surface, their roots should get twisted and turned around. “And yet these structures in the corona are not tangled and snarled and matted like kelp or seaweed in the ocean,” Caspi says.

And, he adds, “Nobody understands why.”

To unknot the photosphere’s tangled mats, the corona must somehow release some of the energy stored there, Caspi says. So during the eclipse, he and colleagues will be looking for the release valves that set the corona free.

One possibility is that the wave motion in the corona’s magnetic field lines helps untie the snarls. Magnetic waves in plasma, called Alfvén waves, are thought to ripple through the sun’s magnetic field lines like vibrations in a guitar string.

Another option is that little puffs of magnetic energy near the solar surface could help release the tangles. These puffs are called nanoflares and nanojets. No one knows if they exit. But scientists suspect that they might. They would be like solar flares but with only a billionth as much energy.

By going off all the time, nanoflares and nanojets might collectively release enough energy to give the corona some structure, computer models indicate.

“Both are symptoms of tiny rearrangements of the magnetic field,” says Craig DeForest. He’s a solar physicist, also at the Southwest Research Institute. Solar flares and coronal mass ejections are signs of such magnetic rearrangements. But they don’t occur often enough to account for the corona’s smoothness. “Nanojets and/or nanoflares in the middle corona would be a smoking gun,” DeForest says. They could “explain why the corona is so organized.”

Researchers have directly observed Alfvén waves in the lower corona, within about half a solar radius of the surface. But they’ve not been seen farther out where waves with different energies would travel. And no one has actually seen any nanoflares or nanojets. Theories suggest they may just be too small and quick to see individually. But they should be visible as an ensemble when the solar eclipse reveals the lower corona.

Caspi, DeForest and their colleagues will fly a pair of telescopes on a NASA WB-57 high-altitude research jet in the path of the eclipse. They hope to see both effects during the eclipse. “We’re taking high-speed movies of the sun and analyzing them for things that look like waves,” Caspi says. “We’re just overall looking at the structure of the corona.”

So it may seem as if an eclipse is little more than Mother Nature’s ultimate light show. In fact, it also can be a great environment to probe some great remaining questions about the workings of our home star.

Power Words

Alfvén waves    A type of magnetic waves that can develop in hot plasma.

atmosphere     The envelope of gases surrounding Earth or another planet.

atom     The basic unit of a chemical element. Atoms are made up of a dense nucleus that contains positively charged protons and uncharged neutrons. The nucleus is orbited by a cloud of negatively charged electrons.

aurora     A light display in the sky caused when incoming energetic particles from the sun collide with gas molecules in a planet’s upper atmosphere. The best known of these is Earth’s aurora borealis, or northern lights. On some outer gas planets, like Jupiter and Saturn, the combination of a fast rate of rotation and strong magnetic field leads to high electrical currents in the upper atmosphere, above the planets’ poles. This, too, can cause auroral “light” shows in their upper atmosphere.

colleague     Someone who works with another; a co-worker or team member.

component     Something that is part of something else (such as pieces that go on an electronic circuit board or ingredients that go into a cookie recipe).

computer model    A program that runs on a computer that creates a model, or simulation, of a real-world feature, phenomenon or event.

constant     Continuous or uninterrupted.

corona     The envelope of the sun (and other stars). The sun’s corona is normally visible only during a total solar eclipse, when it is seen as an irregularly shaped, pearly glow surrounding the darkened disk of the moon.

coronal mass ejection     The powerful release of huge bubbles of gas threaded with magnetic field lines. These can be spew from the sun over a span of hours. They can accompany solar flares, but usually do not.

diagnose    (adj. diagnostic) To analyze clues or symptoms in the search for their cause. The conclusion usually results in a diagnosis — identification of the causal problem.

diffuse    Spread out thinly over a great area; not concise or concentrated.

eclipse     This occurs when two celestial bodies line up in space so that one totally or partially obscures the other. In a solar eclipse, the sun, moon and Earth line up in that order. The moon casts its shadow on the Earth. From Earth, it looks like the moon is blocking out the sun. In a lunar eclipse, the three bodies line up in a different order — sun, Earth, moon — and the Earth casts its shadow on the moon, turning the moon a deep red.

electron     A negatively charged particle, usually found orbiting the outer regions of an atom; also, the carrier of electricity within solids.

element     (in chemistry) Each of more than one hundred substances for which the smallest unit of each is a single atom. Examples include hydrogen, oxygen, carbon, lithium and uranium.

filter     (in chemistry and environmental science) A device or system that allows some materials to pass through but not others, based on their size or some other feature. (in physics) A screen, plate or layer of a substance that absorbs light or other radiation or selectively prevents the transmission of some of its components.

graduate student     Someone working toward an advanced degree by taking classes and performing research. This work is done after the student has already graduated from college (usually with a four-year degree).

grid     (in electricity) The interconnected system of electricity lines that transport electrical power over long distances. In North America, this grid connects electrical generating stations and local communities throughout most of the continent.

infrared light     A type of electromagnetic radiation invisible to the human eye. The name incorporates a Latin term and means “below red.” Infrared light has wavelengths longer than those visible to humans. Other invisible wavelengths include X-rays, radio waves and microwaves. Infrared light tends to record the heat signature of an object or environment.

magnetic field     An area of influence created by certain materials, called magnets, or by the movement of electric charges.

magnetic field lines     The lines that surround a magnet (you can see this if you drop iron filings around the edges of a bar magnet).

Mars     The fourth planet from the sun, just one planet out from Earth. Like Earth, it has seasons and moisture. But its diameter is only about half as big as Earth’s.

mass     A number that shows how much an object resists speeding up and slowing down — basically a measure of how much matter that object is made from.

micrometer     (sometimes called a micron) One thousandth of a millimeter, or one millionth of a meter. It’s also equivalent to a few one-hundred-thousandths of an inch.

National Aeronautics and Space Administration     (or NASA) Created in 1958, this U.S. agency has become a leader in space research and in stimulating public interest in space exploration. It was through NASA that the United States sent people into orbit and ultimately to the moon. It has also sent research craft to study planets and other celestial objects in our solar system.

National Science Foundation     The U.S. Congress created this independent federal agency in 1950 to promote the advancement of science; national health, prosperity and welfare; and the nation’s defense. This agency funds nearly one-fourth of all federally supported basic research in U.S. colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal funding.

network     A group of interconnected people or things.

photosphere    A star’s outer shell (effectively its surface), form which most of its light radiates.

physics     The scientific study of the nature and properties of matter and energy. A scientist who works in such areas is known as a physicist.

planet     A celestial object that orbits a star, is big enough for gravity to have squashed it into a roundish ball and has cleared other objects out of the way in its orbital neighborhood.

plasma     (in chemistry and physics) A gaseous state of matter in which electrons separate from the atom. A plasma includes both positively and negatively charged particles. (in medicine) The colorless fluid part of blood.

polarization    (in physics) The condition — or creation of a condition — in which rays of wavelengths of light exhibit different properties when viewed from different directions.

radius     A straight line from the center to the circumference of a circle or sphere.

satellite     A moon orbiting a planet or a vehicle or other manufactured object that orbits some celestial body in space.

solar eclipse     An event in which the moon passes between the Earth and sun and obscures the sun, at least partially. In a total solar eclipse, the moon appears to cover the entire sun, revealing on the outer layer, the corona. If you were to view an eclipse from space, you would see the moon’s shadow traveling in a line across the surface of the Earth.

solar flare    An explosive event that takes place on the sun when energy that has built up in 'twisted' magnetic fields (usually above sunspots) becomes suddenly released. The energy can in minutes heat to many millions of degrees, emitting a burst of energy. That energy consists of radiation across the electromagnetic spectrum, from gamma rays to radio waves.

solar system     The eight major planets and their moons in orbit around our sun, together with smaller bodies in the form of dwarf planets, asteroids, meteoroids and comets.

solar wind     A flow of charged particles (including atomic nuclei) that have been ejected from the surface of the star, such as our sun. It can permeate the solar system. This is called a stellar wind, when from a star other than the sun.

spectrometer     An instrument that measures a spectrum, such as light, energy, or atomic mass. Typically, chemists use these instruments to measure and report the wavelengths of light that it observes. The collection of data using this instrument, a process is known as spectrometry, can help identify the elements or molecules present in an unknown sample.

spectrum     (plural: spectra) A range of related things that appear in some order. (in light and energy) The range of electromagnetic radiation types; they span from gamma rays to X rays, ultraviolet light, visible light, infrared energy, microwaves and radio waves.

spicule     (in astronomy) A dense jet of gas that erupts from the lowest levels of the sun’s atmosphere. They can rise some 10,000 kilometers (roughly 6,000 miles)

star     The basic building block from which galaxies are made. Stars develop when gravity compacts clouds of gas. When they become dense enough to sustain nuclear-fusion reactions, stars will emit light and sometimes other forms of electromagnetic radiation. The sun is our closest star.

sun     The star at the center of Earth’s solar system. It’s an average size star about 26,000 light-years from the center of the Milky Way galaxy. Also a term for any sunlike star.

telescope     Usually a light-collecting instrument that makes distant objects appear nearer through the use of lenses or a combination of curved mirrors and lenses. Some, however, collect radio emissions (energy from a different portion of the electromagnetic spectrum) through a network of antennas.

totality     (in astronomy) The brief period during an eclipse when one object totally obscures another. For a solar eclipse (when viewed from Earth), this would be when the moon appears to completely block out the sun’s light.

turbulent     (n. turbulence)  An adjective for the unpredictable fluctuation of a fluid (including air) in which its velocity varies irregularly instead of maintaining a steady or calm flow.

unique     Something that is unlike anything else; the only one of its kind.

vibrate     To rhythmically shake or to move continuously and rapidly back and forth.

wavelength     The distance between one peak and the next in a series of waves, or the distance between one trough and the next. Visible light — which, like all electromagnetic radiation, travels in waves — includes wavelengths between about 380 nanometers (violet) and about 740 nanometers (red). Radiation with wavelengths shorter than visible light includes gamma rays, X-rays and ultraviolet light. Longer-wavelength radiation includes infrared light, microwaves and radio waves.


Journal:​ ​​ D.B. Jess et al. Alfvén waves in the lower solar atmosphere. Science. Vol. 323, March 20, 2009, p. 1582. doi: 10.1126/science.1168680.

Further Reading

Questions for ‘What scientists hope to learn from Great American Eclipse’

Wordfind (click here)