An ancient plant inspires a new lab tool | Science News for Students

An ancient plant inspires a new lab tool

This novel pipette can pick up and release tiny amounts of liquid
May 11, 2018 — 6:45 am EST
pipette forest

This is not a garden but a collection of lab tools called pipettes. They’re used to move small amounts of fluid from one place to another. And these experimental designs are based on part of a liverwort, a type of plant. (10 millimeters equals 0.4 inch.)

K. Nakamura et al/Journal of the Royal Society Interface 2018

This is one in a series presenting news on technology and innovation, made possible with generous support from the Lemelson Foundation.

An ancient type of plant has inspired the creation of a new type of measuring tool. Truly tiny, it can collect and move just a few drops of liquid at most. The design, a type of pipette, has several benefits over older types. For instance, it picks up water without the need for suction.

Pipette (Py-PET) is a term from the French that means “little pipe.” As its name suggests, it’s a small tube. It works a bit like a scientific eyedropper. Chemists and other scientists use pipettes to move small, precise amounts of fluid between containers — from a beaker to a test tube, for example.

It takes a lot of practice to use a pipette accurately, notes Hirofumi Wada. He works at Ritsumeikan (RIT-su-MAY-khan) University in Kusatsu (KOO-saht-su), Japan. As a biophysicist, he studies how physical forces affect living things — or are generated by them. Wada is one of the new pipette’s designers.

Precisely controlling the suction that slurps up a small amount of liquid is challenging, he says. Pipettes may have markings on the side to help lab workers measure how much fluid they collect. But even those gauges, he notes, can be hard to read or to rely upon. So research that relies on pipetted fluids may not be as reliable as researchers would like.

Wada hopes that his team’s new device might make such problems a thing of the past.

An idea sprouts

Wada was talking with a colleague one day when they started to chat about liverworts. These are plants whose ancestors were some of the first to grow on land. Fossils suggest that would have been more than 470 million years ago. Liverworts are quite simple. They lack roots, flowers and seeds. But like many modern plants, they do come in male and female forms.

One part of the female liverwort looks like a tiny, pointy-topped umbrella. But unlike an umbrella, this part of the liverwort has no cloth covering. It has only several fingerlike projections that curve down around a stem. When rain falls on this structure, a droplet dribbles inside those “fingers.” There it becomes trapped next to the stem. This creates a moist spot for the plant’s eggs to be fertilized.

Story continues below image.

liverwort pipette
The water-grabbing part of a female liverwort plant (left) inspired the design of the new pipette (right).
K. Nakamura et al/Journal of the Royal Society Interface 2018

When Wada heard about this, an idea immediately sprang to mind: What if a pipette could be designed to collect and hold water the same way? His team modeled its new device, in part, on a female part of a liverwort known as Marchantia polymorpha (Mar-SHAN-tee-uh Pah-lee-MOR-fuh).

They didn’t shape the new device exactly like the plant. For one thing, the liverwort’s stem is inside the tiny cage formed by the fingers. The design team instead put the handle on the top of the pipette, like an umbrella blown inside-out by the wind. And instead of giving their pipette a pointy water-holding space, as the liverwort has, they made the space perfectly round. They thought this would make it easier to precisely control how much fluid each can hold.

But how many fingers should the pipette have? And how long should each finger be?

The researchers made different examples, or prototypes, using a 3-D printer. Some had only three fingers. Others had as many as nine, just like the liverworts that inspired them.

pipette grab
To grab fluid, the new pipette only needs to have its tip dipped into the liquid and then pulled upward. The liquid’s surface tension does the rest.
K. Nakamura et al/Journal of the Royal Society Interface 2018

In some prototypes, the fingers were short. Each finger curved downward through an angle of only about 60 degrees. In other words, if the pipette stem were 12 o’clock on a watch dial, the curving fingers stopped at 2 o’clock. (The angle between those watch hands would be 60 degrees.) Other prototypes had fingers that curved downward as much as 160°. That’s slightly more than the angle between 12 o’clock and 5 o’clock on a watch. In that design, the fingerlike projections almost form a closed cage. The researchers also built pipettes in a variety of sizes.

Then they tested these devices by dipping them into different liquids. One was water. Others included olive oil and a very pure form of ethanol, a type of alcohol.

Researchers lowered the pipettes into the liquids slowly. This made sure air bubbles didn’t get trapped inside the tip. Then they gently pulled the pipette out. And if it had collected some of the fluid, they tried to move that liquid to another place and then release it.

The ideal fingers

The more fingers a pipette had, the better it held liquid. Those with nine fingers always collected a droplet, Wada reports. And the longer those fingers were, the bigger the drop a pipette could reliably hold. However, if those fingers were too long, the pipette didn’t want to release that liquid — which would be a problem for a laboratory tool.

To dispense fluid, researchers simply tilt the new pipette at an angle.
K. Nakamura et al/Journal of the Royal Society Interface 2018

The angle of those fingers also proved important. Those curving downward between 110° and 120° worked best. (That’s around the angle between 12 o’clock and 4 o’clock on a clock’s face.) Wada’s team described its findings March 14 in the Journal of the Royal Society Interface.

To release a droplet, the researchers only had to tilt the stem of the pipette. Gravity then pulled some of the fluid out of the side. A bit of the liquid remained behind. But the amount that flowed out was usually consistent. So it should be very easy to design a pipette to dispense droplets of a particular size, the scientists say.

The largest working pipettes had a tip about 1 centimeter (0.4 inch) across. That’s about the width of a staple, or about half the width of a penny. Such a device would hold a little more than 0.4 cubic centimeter (0.01 ounce) of liquid. (That’s equal to about one-twelfth of a teaspoon.)

How much liquid one of these pipettes can hold depends on the balance between a liquid’s surface tension and gravity, explains John Bush. He’s a mathematician at the Massachusetts Institute of Technology in Cambridge. Bush was not involved in the new study.

Gravity pulls downward on the liquid droplet. Surface tension is a measure of the attraction a liquid’s molecules have for each other. This tension helps hold the droplet together. The liverwort, Bush says, is a great example of a living organism that makes use of that balance.

Wada and his team suspect their pipettes might have uses outside the lab. Maybe robots could use them to transport liquids from one spot to another. Robots or other automated systems might have more trouble that people do in precisely controlling the suction while using a normal pipette.

And there might be more potential uses. Bush says that “you never can tell what applications one might find.” Only after people start playing with a new device, he says, do they learn where it might prove most useful.

Power Words

(more about Power Words)

angle     The space (usually measured in degrees) between two intersecting lines or surfaces at or close to the point where they meet.

application     A particular use or function of something.

cell     The smallest structural and functional unit of an organism. Typically too small to see with the unaided eye, it consists of a watery fluid surrounded by a membrane or wall. Depending on their size, animals are made of anywhere from thousands to trillions of cells. Most organisms, such as yeasts, molds, bacteria and some algae, are composed of only one cell.

colleague     Someone who works with another; a co-worker or team member.

degree     (in geometry) A unit of measurement for angles. Each degree equals one three-hundred-and-sixtieth of the circumference of a circle.

egg     The unfertilized reproductive cell made by females.

environment     The sum of all of the things that exist around some organism or the process and the condition those things create. Environment may refer to the weather and ecosystem in which some animal lives, or, perhaps, the temperature and humidity (or even the placement of components in some electronics system or product).

ethanol     A type of alcohol, also known as ethyl alcohol, that serves as the basis of alcoholic drinks, such as beer, wine and distilled spirits. It also is used as a solvent and as a fuel (often mixed with gasoline, for instance).

force     Some outside influence that can change the motion of a body, hold bodies close to one another, or produce motion or stress in a stationary body.

fossil     Any preserved remains or traces of ancient life.

gauge     A device to measure the size or volume of something. For instance, tide gauges track the ever-changing height of coastal water levels throughout the day. Or any system or event that can be used to estimate the size or magnitude of something else. (v. to gauge) The act of measuring or estimating the size of something.

gravity     The force that attracts anything with mass, or bulk, toward any other thing with mass. The more mass that something has, the greater its gravity.

journal     (in science) A publication in which scientists share their research findings with experts (and sometimes even the public). Some journals publish papers from all fields of science, technology, engineering and math, while others are specific to a single subject. The best journals are peer-reviewed: They send all submitted articles to outside experts to be read and critiqued. The goal, here, is to prevent the publication of mistakes, fraud or sloppy work.

molecule     An electrically neutral group of atoms that represents the smallest possible amount of a chemical compound. Molecules can be made of single types of atoms or of different types. For example, the oxygen in the air is made of two oxygen atoms (O2), but water is made of two hydrogen atoms and one oxygen atom (H2O).

organism     Any living thing, from elephants and plants to bacteria and other types of single-celled life.

pipette     A fluid-collection tool used in chemistry and some biology labs. It may consist of just a thin tube into which fluid is drawn by suction. Once the fluid is inside, the top is closed to keep the liquid inside until someone is ready to dispense it.

projection     Some feature that extends out (or projects) from the body of a structure.

prototype     A first or early model of some device, system or product that still needs to be perfected.

robot     A machine that can sense its environment, process information and respond with specific actions. Some robots can act without any human input, while others are guided by a human.

society     An integrated group of people or animals that generally cooperate and support one another for the greater good of them all.

surface tension     The surface film of a liquid caused by the strong bonds between the molecules in the surface layer.

technology     The application of scientific knowledge for practical purposes, especially in industry — or the devices, processes and systems that result from those efforts.


  • MS-ETS1-1
  • MS-ETS1-2
  • MS-ETS1-3
  • MS-ETS1-4
  • HS-PS2-4
  • HS-PS2-6
  • HS-ETS1-2


Journal: K. Nakamura et al. Plant-inspired pipettesJournal of the Royal Society Interface. Published online March 13, 2018. doi: 10.1098/rsif.2017.0868.